Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice Amandine Thomas, Elise Belaidi, Judith Aron-Wisnewsky, Gerard C. van der Zon, Patrick Levy, Karine Clement, Jean-Louis Pepin, Diane Godin-Ribuot and Bruno Guigas Supplementary Figure 1. Effects of whole-body PHD1 deficiency on tissue-specific expression of PHDs isoforms. The mRNA expression of the various HIF-PHDs isoforms (Egln2: PHD1; Egln1: PHD2; Egln3: PHD3; Ldha: LDHA) was measured by RT-qPCR in liver (A), epididymal white adipose tissue (B) and skeletal muscle (C) of WT (open bars) and PHD1-/- (black bars) mice on standard chow diet. The results are expressed relative to the housekeeping gene RPLP0 as fold change vs WT mice. Data are means \pm SEM (n=7 for WT; n=13 for PHD1-/-). # p<0.05 vs WT mice. Supplementary Figure 2. PHD1 deficiency promotes weight gain and insulin resistance but does not worsen high-fat diet-induced metabolic alterations. WT (open bars) and PHD1-/- (black bars) mice were fed a low-fat (LFD, 10 % fat) or high-fat (HFD, 45% fat) diet for 6 weeks. Body weight was monitored throughout the experimental period (A). Delta (Δ) change in body weight from the start of diet (B), plasma triglycerides (C), total cholesterol (D), glucose (E) and insulin (F) levels were determined and HOMA-IR (G) was calculated in 6-hour unfed mice at week 6. An intraperitoneal GTT (2 g/kg of total body weight) was performed in 6-hour unfed mice at week 5. Blood glucose levels were measured at the indicated time-points (H), and the area under the curve (AUC) of the glucose excursion curve was calculated as a measure of glucose tolerance (I). The plasma insulin level during ipGTT was measured at 15 minutes (J). An intraperitoneal ITT (0.5 U/kg total body weight) was performed in 6-hour unfed mice at week 6. Blood glucose levels were measured at the indicated time-points (K) and the AUC of the glucose excursion curve was calculated as a measure of insulin resistance (L). Data are means ± SEM (n=4 for LFD-WT; n=7 for LFD-PHD1-/-; n=5 for HFD-WT; n=7 for HFD-PHD1-/-). * p<0.05 vs LFD-fed mice, # p<0.05 vs WT mice. Supplementary Figure 3. Effects of PHD1 deficiency on AMPK signaling pathway in skeletal muscle from low- and high-fat diet-fed mice. Protein expression of AMPKα and ACC, and phosphorylation state of Thr172-AMPKα and Ser79-ACC were assessed by Western blot 15min after insulin injection in skeletal muscle from WT (open bars) and PHD1-/- (black bars) mice on low-fat (LFD) or high-fat (HFD) diet, as described in Figure 3. Representative blots are shown in (A) and densitometric quantifications in (B-G). Phospho/total ratios were calculated and expressed as fold change relative to WT-LFD mice. Data are means ± SEM (n=4 for LFD-WT; n=7 for LFD-PHD1-/-; n=5 for HFD-WT; n=7 for HFD-PHD1-/-). * p<0.05 vs LFD mice, # p<0.05 vs WT mice Supplementary Figure 4. Effects of PHD1 deficiency on AMPK signaling and expression of lipogenic proteins and metabolic/inflammatory genes in white adipose tissue from low- and high-fat diet-fed mice. Protein expression of AMPKα, ACC and FAS, and phosphorylation state of Thr172-AMPKα were assessed by Western blot 15min after insulin injection in epididymal white adipose tissue (eWAT) from WT (open bars) and PHD1-/- (black bars) mice on low-fat (LFD) or high-fat (HFD) diet, as described in Figure 3. Representative blots are shown in (A) and densitometric quantifications expressed as fold change relative to WT-LFD mice in (B-F). HSP90 was used for internal housekeeping protein expression. mRNA expression of key genes involved in glucose/FA uptake (*Insr*: Insulin receptor β, *Slc2a4*: GLUT4; *Cd36*: CD36), triglyceride synthesis (*Fasn*: FAS; *Acaca*: ACC1), fatty acid oxidation (*Lipe*: HSL; *Cpt1a*: CPT1α; *Ucp1*: UCP1) and adipokines (*Adipoq*: Adiponectin; *Lep*: Leptin) was measured by RT-qPCR (G). mRNA expression of key genes involved in eWAT inflammation (H) was measured by RT-qPCR (*Emr1*: F4/80, Cd68:CD68;Arg1: ARG1; Itgax: CD11c; Ccl2: MCP-1; Il1b: IL1β; Tnfa: TNFα). Results are expressed relative to the housekeeping gene RPLP0 as fold change vs WT-LFD mice. Data are means ± SEM (n=4 for LFD-WT; n=7 for LFD-PHD1-/-; n=5 for HFD-WT; n=7 for HFD-PHD1-/-). * p<0.05 vs LFD mice, # p<0.05 vs WT mice. Supplementary Figure 5. PHD1 deficiency increases hepatic lipogenic gene expression in chow-fed mice. Livers from WT (open bars) and PHD-/- (black bars) mice on standard chow diet. The mRNA expression of key genes involved in the regulation of hepatic TG synthesis (A; *Srebf1*: SREBP-1c; *Acaca*: ACC1; *Fasn*: FAS; *Scd1*: SCD1), cholesterol synthesis (A; *Srebf2*: SREBP2; *Hmgcr*: HMGCoA reductase; *Hmgcs2*: HMGCoA synthase) and fatty acid oxidation (A; *Ppara*: PPARα; *Pdk4*: PDK4; *Cpt1a*: CPT-1α; *Acox1*: acyl-coA oxidase 1) and glycolysis (B; *Gapdh*, GAPDH; *Eno1*, Enolase; *Pklr*, PK) was measured by RT-qPCR. The results are expressed relative to the housekeeping gene RPLP0 as fold change *vs* WT mice. Data are means ± SEM (n=7 for WT; n=13 for PHD1-/-). # p<0.05 *vs* WT mice. ## **Supplementary Table 1: Primary antibodies for Western blots** | Primary antibody | Residue | Supplier | Reference | Dilution | |------------------|---------|----------------|-----------------|----------| | ACC | _ | Cell Signaling | #3662 | 1:2000 | | ACC | Ser79 | Cell Signaling | #3661 | 1:2000 | | ΑΜΡΚα | - | Cell Signaling | #2532 | 1:1000 | | AMPKα | Thr172 | Cell Signaling | #2535 | 1:1000 | | FAS | | Cell signaling | #3180 | 1:1000 | | ΡΚΒα+β | | Upstate | 07-416 + 07-372 | 1:2000 | | PKB | Ser473 | Cell signaling | #9271 | 1:1000 | | HSP90 | | Santa Cruz | sc-7947 | 1:1000 | ## **Supplementary Table 2: Primer sequences for qRT-PCR** | Gene | Accession number | Forward primer | Reverse primer | |--------|------------------|--------------------------|---------------------------| | Acaca | NM_133360.2 | CAGCTGGTGCAGAGGTACCG | TCTACTCGCAGGTACTGCCG | | Acox1 | NM_015729 | GGGACCCACAAGCCTCTGCCA | GTGCCGTCAGGCTTCACCTGG | | Adipoq | NM_009605 | GGAATGACAGGAGCTGAAGG | CGAATGGGTACATTGGGAAC | | Arg1 | NM_007482.3 | GACCACGGGGACCTGGCCTT | ACTGCCAGACTGTGGTCTCCACC | | Ccl2 | NM_011333.3 | TCAGCCAGATGCAGTTAACGCCC | GCTTCTTTGGGACACCTGCTGCT | | Cd36 | NM_001159558 | GCAAAGAACAGCAGCAAAATC | CAGTGAAGGCTCAAAGATGG | | Cd68 | NM_009853.1 | CCTCCACCCTCGCCTAGTC | TTGGGTATAGGATTCGGATTTGA | | Cpt1a | NM_013495 | AGGAGACAAGAACCCCAACA | AAGGAATGCAGGTCCACATC | | Egln1 | NM_053207 | AGGCTATGTCCGTCACGTTG | TACCTCCACTTACCTTGGCG | | Egln2 | NM_053208 | TCACGTGGACGCAGTAATCC | CGCCATGCACCTTAACATCC | | Egln3 | NM_028133 | AGGCAATGGTGGCTTGCTAT | GACCCCTCCGTGTAACTTGG | | Emr1 | NM_010130.4 | CTTTGGCTATGGGCTTCCAGTC | GCAAGGAGGACAGAGTTTATCGTG | | Eno1 | NM_023119.2 | TGGAGAACAAAGAAGCACTGG | TGCCAGACCTGTAGAACTCG | | Fasn | NM_007988 | CACAGGCATCAATGTCAACC | TTTGGGAAGTCCTCAGCAAC | | Gapdh | NM_008084.2 | TGTGTCCGTCGTGGATCTGA | CCTGCTTCACCACCTTCTTGAT | | Hmgcr | NM_008255 | CTTGTGGAATGCCTTGTGATTG | AGCCGAAGCACATGAT | | Hmgcs2 | NM_008256.4 | CATCGCAGGAAGTATGCCCG | GCTGTTTGGGTAGCAGCTCG | | Il1b | NM_008361 | GACCCCAAAAGATGAAGGGCT | ATGTGCTGCTGCGAGATTTG | | Il6 | NM_031168.1 | TGTGCAATGGCAATTCTGAT | CTCTGAAGGACTCTGGCTTTG | | Insr | NM_010568.2 | GCCAAAATTATCATTGGACCCC | CATCCGGCTGCCTCTTTCT | | Itgax | NM_021334.2 | GCCACCAACCCTTCCTGGCTG | TTGGACACTCCTGCTGTGCAGTTG | | Ldha | NM_010699.2 | CCTGTGTGGAGTGGTGAA | ATCACCTCGTAGGCACTGTC | | Lipe | NM_010719 | AGCCTCATGGACCCTCTTCT | GCCTAGTGCCTTCTGGTCTG | | Lep | NM_008493 | CCCTGTGTCGGTTCCTGTGGC | GCGGATACCGACTGCGTGTGT | | Pdk4 | NM_013743 | GATTGACATCCTGCCTGACC | CAGGGCTTTCTGGTCTTCTG | | Ppara | NM_011144 | CAACCCGCCTTTTGTCATAC | CCTCTGCCTCTTTGTCTTCG | | Pklr | NM_013631 | CCTCTGCCTTCTGGATATCGAC | CGATGGTGGCAATGATGCT | | Scd1 | NM_009127.4 | GCTCTACACCTGCCTCTTCGGGAT | TCCAGAGGCGATGAGCCCCG | | Slc2a1 | NM_011400.3 | AGCATCTTCGAGAAGGCAGG | ACAACAAACAGCGACACCAC | | Slc2a2 | NM_031197.2 | TCATGTCGGTGGGACTTGTG | CCCAAGGAAGTCCGCAATGT | | Slc2a4 | NM_009204 | CTCAATGGTTGGGAAGGAAA | GAGGAACCGTCCAAGAATGA | | Srebf1 | NM_011480 | CTGGCTGAGGCGGGATGA | TACGGGCCACAAGAAGTAGA | | Srebf2 | NM_033218.1 | GCGTTCTGGAGACCATGGA | ACAAAGTTGCTCTGAAAACAAATCA | | Tnfa | NM_013693 | GTCCCCAAAGGGATGAGAAG | CACTTGGTGGTTTGCTACGA | | Ucp1 | NM_009463 | TCAGGATTGGCCTCTACGAC | TGCATTCTGACCTTCACGAC |